Math 254-2 Exam 1 Solutions

1. Carefully state the definition of "spanning". Give two examples for \mathbb{R}^{2}.

A set of vectors S is spanning if every vector in the vector space can be achieved through linear combinations of S. Equivalently, S is spanning if $\operatorname{span}(S)$ is the whole vector space. Many examples are possible. Any basis, such as $\{(1,0),(0,1)\}$, will work. But other examples are possible too, such as $\{(1,1),(1,2),(1,3)\}$.
2. Let $u=\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]$, and $v=\left[\begin{array}{lll}0 & 7 & 15\end{array}\right]$. For each of the following, determine what type they are (undefined, scalar, matrix/vector). If a matrix/vector, specify the dimensions.
DO NOT CALCULATE ANY NUMBERS.
(a) $u v^{T} u$
(b) $u^{T} v u$
(c) $u^{T} v u^{T}$
(d) $(u \cdot v) \cdot u$ (e) $(u \times v) \cdot u$
u, v are $1 \times 3 ; u^{T}, v^{T}$ are 3×1. Hence $u v^{T} u$ has pattern $(1 \times 3)(3 \times 1)(1 \times 3)$; both matrix multiplications are possible, and the result of (a) is a 1×3 matrix (or a row 3 -vector). $u^{T} v u$ has $(3 \times 1)(1 \times 3)(1 \times 3)$; although the first matrix multiplication is possible, the second is not - (b) is undefined. $u^{T} v u^{T}$ has $(3 \times 1)(1 \times 3)(3 \times 1)$; both matrix multiplications are possible, and the result of (c) is a 3×1 matrix (or a column 3 -vector). $u \cdot v$ gives a scalar, hence (d) is undefined since dot product requires two vectors. (e) is a scalar, because $(u \times v)$ is a 3 -vector, hence its dot product with u can be calculated and is a scalar.
3. Let $u=(1,2,3)$, and $v=(16,-8,0)$. Are these vectors orthogonal?

Be sure to justify your answer.
We calculate $u \cdot v=1(16)+2(-8)+3(0)=0$. Since this is zero, these vectors are orthogonal.
4. For $A=\left[\begin{array}{rrr}1 & -1 & 0 \\ -1 & 0 & 5\end{array}\right]$ and $B=\left[\begin{array}{rr}3 & 1 \\ 1 & -1 \\ 0 & 2\end{array}\right]$, calculate $A B$ and $B A$.

$$
A B=\left[\begin{array}{cc}
3-1+0 & 1+1+0 \\
-3+0+0 & -1+0+10
\end{array}\right]=\left[\begin{array}{cc}
2 & 2 \\
-3 & 9
\end{array}\right] . \quad B A=\left[\begin{array}{ccc}
3-1 & -3+0 & 0+5 \\
1+1 & -1+0 & 0-5 \\
0-2 & 0+0 & 0+10
\end{array}\right]=\left[\begin{array}{rrr}
2 & -3 & 5 \\
2 & -1 & -5 \\
-2 & 0 & 10
\end{array}\right] .
$$

5. For $u=(5,1,0)$ and $v=(0,2,-2)$, calculate $u \times v$ and $v \times u$.

Method 1, determinant formula: $u \times v=\left|\begin{array}{cc}1 & 0 \\ 2 & -2\end{array}\right| \mathbf{i}-\left|\begin{array}{cc}5 & 0 \\ 0 & -2\end{array}\right| \mathbf{j}+\left|\begin{array}{ll}5 & 1 \\ 0 & 2\end{array}\right| \mathbf{k}=$ $=(-2+0) \mathbf{i}-(-10+0) \mathbf{j}+(10-0) \mathbf{k}=-2 \mathbf{i}+10 \mathbf{j}+10 \mathbf{k}=(-2,10,10)$ $\left.v \times u=\left|\begin{array}{c}2 \\ 1\end{array} 0_{0}^{2}\right| \mathbf{i}-\left|\begin{array}{c}0 \\ 5\end{array} 0_{0}^{-2}\right| \mathbf{j}+\left|\begin{array}{ll}0 & 2 \\ 5\end{array}\right| \mathbf{k}=(0+2) \mathbf{i}-(0+10)\right) \mathbf{j}+(0-10) \mathbf{k}=$ $=2 \mathbf{i}-10 \mathbf{j}-10 \mathbf{k}=(2,-10,-10)$
Method $2, \mathbf{i}, \mathbf{j}, \mathbf{k}$ technique: $u \times v=(5 \mathbf{i}+\mathbf{j}) \times(2 \mathbf{j}-2 \mathbf{k})=10(\mathbf{i} \times \mathbf{j})-10(\mathbf{i} \times$ $\mathbf{k})+2(\mathbf{j} \times \mathbf{j})-2(\mathbf{j} \times \mathbf{k})=10 \mathbf{k}-10(-\mathbf{j})+2(0)-2 \mathbf{i}=(-2,10,10)$.
$v \times u=(2 \mathbf{j}-2 \mathbf{k}) \times(5 \mathbf{i}+\mathbf{j})=10(\mathbf{j} \times \mathbf{i})-10(\mathbf{k} \times \mathbf{i})+2(\mathbf{j} \times \mathbf{j})-2(\mathbf{k} \times \mathbf{j})=$ $10(-\mathbf{k})-10 \mathbf{j}+2(0)-2(-\mathbf{i})=(2,-10,-10)$.

